Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process
نویسندگان
چکیده
BACKGROUND Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardizing growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process. RESULTS The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Delta background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g(-1) in the wild type to 0.44 g g(-1) measured in TEFmut7 and 0.45 g g(-1) in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 +/- 4 g L(-1)), growth-inhibiting ethanol concentration (87 +/- 3 g L(-1)) and volumetric ethanol productivity (2.1 +/- 0.15 g l(-1) h(-1)) measured in wild-type remained virtually unchanged in the engineered strains. CONCLUSIONS This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" GPD1 expression in a gpd2Delta background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains gpd1Delta or gpd2Delta. Although glycerol reduction is known to be even higher in a gpd1Delta gpd2Delta double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability.
منابع مشابه
Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool.
On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation r...
متن کاملComparison between batch and fed-batch production of rhamnolipid by Pseudomonas aeruginosa
This paper presents a comparison between batch and three different sets of fed batch fermentations forrhamnolipid production by Pseudomonas aeruginosa. The batch run was performed with 500 ml of culturemedium having the initial glycerol and sodium nitrate concentrations of 30 and 8.3 g/l, respectively. For a fedbatch run with nitrogen source in feed, 250 ml of the nitrogen exc...
متن کاملThe metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae
BACKGROUND Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to...
متن کاملGenome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture.
A dynamic flux balance model based on a genome-scale metabolic network reconstruction is developed for in silico analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Metabolic engineering strategies previously identified for their enhanced steady-state biomass and/or ethanol yields are evaluated for fed-batch performance in glucose and glucose/xylose medi...
متن کاملA Simplified Process for Purification and Refolding of Recombinant Human Interferon-α2b
Background: Interferon α-2b is a vital biotherapeutic produced through the recombinant DNA technology in E. coli. The recombinant IFN-α2b normally appears as intercellular IBs, which requires intensive refolding and purification steps. Method: Purification of IFN-α2b from solubilized IB was performed using two-phase extraction. To optimize refolding conditions, the effects of pH and different a...
متن کامل